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SUMMARY

Prostate cancer (PCa) is heterogeneous and contains
both differentiated and undifferentiated tumor cells,
but the relative functional contribution of these two
cell populations remains unclear. Here we report
distinct molecular, cellular, and tumor-propagating
properties of PCa cells that express high (PSA+) and
low (PSA�/lo) levels of the differentiation marker
PSA. PSA�/lo PCa cells are quiescent and refractory
to stresses including androgen deprivation, exhibit
high clonogenic potential, and possess long-term
tumor-propagating capacity. They preferentially ex-
press stem cell genes and can undergo asymmetric
cell division to generate PSA+ cells. Importantly,
PSA�/lo PCa cells can initiate robust tumor develop-
ment and resist androgen ablation in castrated hosts,
and they harbor highly tumorigenic castration-
resistant PCa cells that can be prospectively en-
riched using ALDH+CD44+a2b1+ phenotype. In con-
trast, PSA+ PCa cells possess more limited
tumor-propagating capacity, undergo symmetric
division, and are sensitive to castration. Altogether,
our study suggests that PSA�/lo cells may represent
a critical source of castration-resistant PCa cells.

INTRODUCTION

Prostate cancer (PCa) is heterogeneous, manifesting variegated

cellular morphologies and histopathological presentations. PCa
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also exhibits great intratumor histological and immunopheno-

typic heterogeneities, with low-grade tumors often harboring

poorly differentiated areas and high-grade tumors containing

relatively differentiated foci. The cellular basis for the histological

and cellular heterogeneity of PCa remains unclear.

Androgen and androgen receptor (AR) signaling has been

implicated in PCa. Androgen-deprivation therapy (ADT) blocks

androgen production or AR signaling and is the mainstay treat-

ment for advanced and recurrent PCa, but such interven-

tions only achieve short-term efficacy due to the emergence of

castration-resistant disease (i.e., castration-resistant prostate

cancer, CRPC). Although many mechanisms, mostly centered

on AR, have been proposed for CRPC development (Shen and

Abate-Shen, 2010; Wang et al., 2009a), the cell-of-origin and

molecular identity of CRPC cells remain undefined.

Numerous studies have demonstrated that prostate-specific

antigen (PSA) protein expression in PCa positively correlates

with its overall degree of differentiation (e.g., Abrahamsson

et al., 1988; Feiner and Gonzalez, 1986; Gallee et al., 1990). At

the cellular level, PCa contains differentiated cancer cells ex-

pressing high levels of PSA (i.e., PSA+), as well as PCa cells

that express little or no PSA (i.e., PSA�/lo). The PSA�/lo cells

appear to be rare in early-stage tumors but become more abun-

dant in high-grade and locally advanced tumors, and some

cases of PCamay completely lack PSA expression. PCa patients

with tumors containing >50% PSA+ PCa cells tend to have

longer survival (Roudier et al., 2003; Shah et al., 2004). These

clinical observations raise a fundamental question: could

PSA�/lo PCa cells be intrinsically distinct from PSA+ cells and

thus play differential roles in tumormaintenance and progression

to CRPC? Herein, we address this clinically relevant question

using a PSA promoter-driven lentiviral reporter system to

separate bulk PCa cells into PSA�/lo and PSA+ subpopulations.
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RESULTS

Increased PSA–/lo Cells and Reduced PSAmRNA in High-
Grade Primary Tumors and Recurrent PCa
We first performed a semiquantitative PSA immunohisto-

chemical (IHC) analysis in cohorts of untreated Gleason 7

(GS7, n = 10), Gleason 9 or 10 (GS9/10, n = 10), and treat-

ment-failed (n = 23) PCa (see Figure S1 and Table S1 available

online). Most tumor glands in GS7 tumors stained strongly for

PSA, but there existed poorly differentiated areas of PSA�/lo cells

(Figure S1A). In contrast, in GS9/10 tumors, the main histological

pattern was undifferentiated tumor mass in which most tumor

cells were PSA�/lo, with PSA+ foci only occasionally present (Fig-

ure S1B). In 23 recurrent PCa cases (mainly CRPC), some tumors

resembled untreated GS9/10 tumors, but most tumors com-

pletely lacked PSA+ PCa cells (Figures S1C–S1F). Quantification

revealed significantly increased numbers of PSA�/lo PCa cells in

untreated GS9/10 and treatment-failed PCa compared to

untreated GS7 tumors (Figure 1A).

Consistent with the IHC results, analysis of multiple microarray

data sets in Oncomine revealed that tumor PSA mRNA levels

were significantly decreased in high-grade primary tumors and

in recurrent and metastatic PCa (Figure S2; data not shown).

Importantly, reduced tumor PSA mRNA levels correlated

with lymph node positivity, tumor recurrence, metastasis, and

shortened patient survival (Figure S2; data not shown; see also

Figure 6A). Together, the PSA IHC and mRNA analysis indicates

that advanced and recurrent PCa have lower PSA mRNA and

more undifferentiated PSA�/lo cells.

A Lentiviral Reporter System that Separates PSA–/lo PCa
Cells from PSA+ Cells
ToseparatePSA�/lo fromPSA+PCacells,weemployed thePSAP-

GFP lentivector, in which the PSA promoter (PSAP) drives eGFP

expression (Yu et al., 2001) (Figure S3A). The PSAP was originally

isolated from a PCa patient with high-serum PSA and was highly

specific and sensitive for PSA-positive prostate (cancer) cells.

We also generated twomodified PSAP-GFP vectors (Figure S3A).

Using the PSAP-GFP vector, we infected LNCaP cells at an

multiplicity of infection (MOI) of 25 (Figure 1B), at which virtually

all cells were infected, as evidenced by PCR detection of the

GFP sequence in genomic DNA of randomly picked clones (Fig-

ure 1C).We then used fluorescence-activated cell sorting (FACS)

to purify out the top 10%GFP-bright (GFP+) and bottom 2%–6%

GFP-negative/GFP-dim (i.e., GFP�/lo) LNCaP cells. The purity of

GFP�/lo andGFP+cellswas98%–100%andR97%, respectively

(e.g., Figure S3B). LNCaP cells routinely cultured in RPMI-7%

fetal bovine serum (FBS) contained 2.7% ± 1.8% (0.3%–6.0%;

n = 15) GFP�/lo cells. When LNCaP cells were infected with

PSAP-GFP-Psv40-neo (Figure S3A) followed by G418 selection

for severalweeks,weobserved2.7%±1.7% (n=7)GFP�/lo cells.

The percentage of GFP�/lo LNCaP cells was very close to that

of PSA�/lo cells in LNCaP cultures (2.2% ± 1.5%; n = 4). Real-

time (qPCR; Figure 1D) and semiquantitative (Figure S3C) RT-

PCR revealed lower PSA mRNA levels in GFP�/lo LNCaP cells

compared to the corresponding GFP+ cells. Also, most purified

GFP+ LNCaP cells stained strongly positive for PSA protein,

whereas GFP�/lo cells were weak or negative for PSA (Figure 1E).

GFP�/lo LNCaP cells also expressed lower levels of AR mRNA
(Figure 1D; Figure S3C) and protein (Figures 1F and 1G)

compared to GFP+ cells. These results indicate that the PSAP-

GFP lentiviral system faithfully reports endogenous PSA expres-

sion. Hence, in many forgoing experiments we refer to GFP+ and

GFP�/lo cells as PSA+ and PSA�/lo cells, respectively.

AR staining revealed �82% and 18% GFP+ LNCaP cells

showing strong and intermediate nuclear AR, respectively, and

no GFP+ LNCaP cells were negative for AR (Figure 1F). In

contrast, 46%of the PSA�/lo LNCaP cells were completely nega-

tive for AR, whereas 41% and 13% PSA�/lo LNCaP cells had

weak and strong AR, respectively (Figure 1F). These results

suggest that the majority of PSA+ PCa cells are high in AR,

whereas PSA�/lo cells express a gradient of AR, from completely

negative to strong nuclear staining.

PSA–/lo LNCaP Cells Preferentially Express Antistress
Genes and Are Resistant to Androgen Deprivation,
Chemotherapeutics, and Pro-Oxidants
When PSAP-GFP-infected LNCaP cells were cultured in

androgen-deprived conditions, i.e., using charcoal dextran-

stripped serum (CDSS) or with bicalutamide (an antiandrogen),

PSA+ cells dramatically decreased with a concomitant expan-

sion of PSA�/lo cells (Figure S3D). Purified PSA�/lo LNCaP cells

also displayed higher survival and holoclone-forming (Li et al.,

2008) capacity in the absence of androgen (Figure S3E). These

results suggest that PSA�/lo PCa cells are resistant to androgen

deprivation.

Whole-genome transcriptome profiling in purified PSA�/lo and

PSA+ LNCaP cells revealed distinct gene expression patterns in

the two isogenic subpopulations (Figure 1H). A total of 726

probes representing 561 unique genes was significantly overex-

pressed, whereas 557 probes representing 403 genes were

underexpressed (fold change [FC] R 1.4, p < 0.05) in PSA�/lo

LNCaP cells (Figure S3F; Figure S3G shows qPCR of several

genes). A combination of Gene Ontology (GO) analysis and liter-

ature-based curation put many of these differentially expressed

genes into distinct functional categories (Figure 1H; Table S2).

Strikingly, as many as 10% of the genes overexpressed in

PSA�/lo LNCaP cells were involved in antistress responses,

which included detoxification (metallothioneins, GSTT2, etc.),

hypoxia-responsive (HIF1a, THBS1, PLAU, APLN), p53 signaling

(e.g, ZBTB7A, PSME3), and DNA-damage sensing/repair (e.g.,

MSH6, XPA, REV1) genes (Figures 1H and 1I; Table S2). The

PSA�/lo LNCaP cells also overexpressed Bcl-2 and underex-

pressed many proapoptotic genes (Table S2).

Differential expression of antistress and proapoptotic genes

suggests that the PSA�/lo cells would be more resistant to

not only androgen deprivation but also other stresses. Indeed,

when LNCaP cells infected with PSAP-GFP were treated with

CDSS plus bicalutamide, etoposide, paclitaxel (taxol), or H2O2,

PSA�/lo cells expandedwith concomitantdecreases inPSA+cells

(Figure 1J). FACSanalysis indicated that these treatments prefer-

entially induced apoptosis in PSA+ LNCaP cells (data not shown).

PSA–/lo LNCaP Cells Underexpress Genes Associated
with Cell-Cycle Progression andMitosis, Are Quiescent,
and Possess Stem Cell Gene Expression Profiles
The PSA�/lo LNCaP cells underexpressed dozens of cell-cycle

and mitosis-related genes (Figure 1H; Figure S3H; Table S2),
Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc. 557
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Figure 1. Distinct Molecular and Biological Properties of PSA–/lo and PSA+ LNCaP Cells

(A) Abundance of PSA�/lo tumor cells in untreated low-grade (GS7) and high-grade (GS9/10) tumors or in treatment-failed (Tx) PCa. See Table S1 and Figure S1 for

relevant information.

(B) Schematic of GFP+ and GFP�/lo cell sorting.

(C) Genomic PCR of GFP sequence in clonally derived LNCaP cells. b-actin, control for DNA; PSAP-GFP vector, positive control for GFP. Shown are results from 3

GFP+ and 9 GFP�/lo (1–3, type I; 4–6, type II; 7–9, type III; see Figure S4F for clone types) clones.

(D) qPCR analysis of PSA and AR mRNA in GFP+ and GFP�/lo LNCaP cells (n = 3; all error bars in all figures represent the mean ± SD unless otherwise stated).

*p = 0.005; #p = 0.047.

(E) Representative microphotographs (scale bar represents 20 mm) of PSA staining in GFP+ and GFP�/lo LNCaP cells (n = 4).

(F and G) GFP�/lo LNCaP cells express lower levels of nuclear AR. (F) Cells that expressed high (ARhi), low (ARlow), and no (ARneg) nuclear AR were counted, and

the results were expressed as percentage of total (mean ± S.D; xp = 6.97E09; *p = 0.05; #p = 0.008). (G) Representative images (scale bar represents 20 mm). In

(Ga) and (Gb), all cells are ARhi, with only one ARlow (arrow) cell. In (Gc) and (Gd), all cells are ARneg, with two cells being ARlow (arrows).

(H) Distinct gene expression profiles of PSA�/lo and PSA+ LNCaP cells. Shown are pie charts of gene categories (percentage indicated) overexpressed (top) and

underexpressed (bottom) in PSA�/lo cells.

(I) Heat map presentation of representative antistress genes overexpressed in PSA�/lo LNCaP cells. The scale bar depicts relative expression levels (log scale)

derived from raw values of each gene divided by its respective SD across all six samples and centered at 0.

(J) PSA�/lo LNCaP cells are resistant to androgen deprivation (i.e., CDSS plus bicalutamide), as well as chemotherapeutics and hydrogen peroxide. Shown

are%PSA�/lo cells in PSAP-GFP-infected LNCaP cells treated with the conditions indicated for 2, 4, and 7 days (d). Differences between all individual treatments

and DMSO are statistically significant (p < 0.01; mean ± SD; n = 4).

(K) PSA�/lo LNCaP cells are slow cycling. Cell-cycle analysis in purified PSA�/lo versus PSA+ LNCaP cells. Shown are the mean percentages of cells in different

phases of the cell cycle (n = 2).

(L) PSA�/lo LNCaP cells are quiescent. Shown is the percent label (i.e., BrdU) of retaining cells (LRCs) in purified PSA�/lo versus PSA+ LNCaP cells (mean ± SD;

n = 3). *p < 0.0001.
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suggesting that PSA�/lo PCa cells may be more quiescent than

PSA+ cells. Several lines of evidence supported this suggestion.

First, cell-cycle analysis revealed a smaller percentage of PSA�/lo

LNCaP cells in S and G2/M phases (Figure 1K). Second, the

PSA�/lo and PSA+ LNCaP populations had 4.2% and 12%,
558 Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc.
respectively, of Ki-67+ cells (p < 0.0001). Third, BrdU label-retain-

ing experiments demonstrated that many more PSA�/lo LNCaP

cells retained the BrdU label upon an 11-d chase (Figure 1L).

The observations that PSA�/lo LNCaP cells are quiescent and

resist stress stimulations suggest that the population may be
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Figure 2. Distinct Biological Properties and Division Mode of PSA–/lo LNCaP Cells

(A) PSA�/lo LNCaP cells possess high sphere-forming capacity. Shown is the sphere-forming efficiency (%; *p < 0.0001) 10 days after plating. Insets show

spheres generated from PSA+ (left) and PSA�/lo cells.

(B) PSA�/lo LNCaP cells possess higher 2� sphere-forming capacity than PSA+ cells. Individual 1� spheres in (A) were picked, dissociated, and used in 2� sphere
assays.

(C) Heat map presentation of some SC-associated genes overexpressed in PSA�/lo LNCaP cells.

(D) Knocking down of ASCL1, IGF-1R, or NKX3.1 in PSA�/lo LNCaP cells reduced sphere formation. Bars represent mean ± SD (n = 3).

(E) Knocking down of ASCL1, IGF-1R, or NKX3.1 inhibited expansion of PSA�/lo (i.e., GFP�) cells. LNCaP cells that had been stably knocked down for the three

genes were infected with PSAP-GFP and then treated with DMSO (vehicle), CDSS plus bicalutamide (20 mM), or etoposide (Eto., 50 mM) for 7 days. Bars represent

mean ± SD (n = 3).

(F–I) Single PSA+ (F) and PSA�/lo (G–I) LNCaP cells were tracked under a time-lapse video microscope. Images in (F) show symmetric cell division from a GFP+

LNCaP cell (representative of 52movies; seeMovie S1 for an example), and images in (G)–(I) represent type I, type II, and type III clones, respectively, derived from

single GFP� cells (from 292 movies; see Movie S1 for examples). Scale bar represents 20 mm.

(J) Quantification of cell division mode in GFP� cells during the first cell division (n = 97 movies).

(K) Quantification of the type of clones derived from GFP� cells at the end of recording (n = 113 movies).

(L) Asymmetric Numb segregation during divisions of GFP� LNCaP cells in the single thymidine block and postmitosis Numb staining experiment.
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enriched in stem cells (SCs) (Laffin and Tang, 2010). In support of

this, the PSA�/lo LNCaP cells, in androgen/serum-free medium,

possessed higher capacity to establish holoclones (Figure S3E)

and anchorage-independent prostaspheres (Figure 2A). The

PSA�/lo cell-derived spheresweremuch larger (Figure 2A, insets)

and generated significantly more secondary spheres than the

PSA+ cell-originated spheres (Figure 2B). PSA�/lo LNCaP cells

also preferentially expressed many SC and developmental

genes, such as ASCL1, CTED2, GATA6, IGF-1R, KLF5, LRIG1,

NKX3.1, and TBX15 (Figure 1H; Figure 2C; Table S2). We
employed tetracycline-inducible pTRIPZ lentiviral shRNAmir

system to knock down three representative SC molecules, i.e.,

ASCL1 (Jiang et al., 2009), NKX3.1 (Wang et al., 2009b), and

IGF-1R (Chan et al., 1998) (Figure S3I) in PSA�/lo LNCaP cells.

Knocking down each of these molecules reduced sphere forma-

tion of PSA�/lo LNCaP cells (Figure 2D) without affecting the

inherently low sphere-forming activity in PSA+ LNCaP cells

(data not shown). Furthermore, ASCL1 knockdown significantly

inhibited (p < 0.05), whereas IGF-1R or NKX3.1 knockdown

partially reduced, the expansion of PSA�/lo cells caused by
Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc. 559
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androgen deprivation and etoposide (Figure 2E). These results

suggest that at least some of the ‘‘stemness’’ genes overex-

pressed in the PSA�/lo LNCaP cells are functionally important.

Interestingly, PSA�/lo LNCaP cells, compared to PSA+ cells,

overexpressed some (e.g., EED, HDAC4, PHF8) but underex-

pressed other (e.g., DNMT3B, PHF19) chromatin modifiers/

epigenetic regulators (Figure S3J; Table S2). The functional

significance of these changes in regulating the epigenetic land-

scape of PSA�/lo PCa cells is currently explored by genome-

wide ChIP-Seq analysis.

PSA–/lo LNCaP Cells Can Undergo Asymmetric Cell
Division and Regenerate PSA+ Cells
LNCaP cultures in RPMI-7% FBS contained �1.4% of GFP�/lo

cells, with the bulk being GFP+ (Figure S4A). When purified cells

were cultured continuously for �3 weeks, GFP+ LNCaP cells

remained all GFP+ (Figure S4B), whereas GFP� cultures became

heterogeneous, containing 1.8% GFP� cells and �75% GFP-

bright cells (Figure S4C). The 2� GFP+ LNCaP cultures derived

from 1� GFP� cells continued to remain all GFP+ after an addi-

tional 17-day culture (Figure S4D), whereas the 2� GFP� cultures

continued to regenerate both GFP� and GFP+ cells (data not

shown). Clonal development assays (Patrawala et al., 2005,

2006) revealed that cells in the clones derived from single GFP+

LNCaP cells remained 100% GFP+ at 2 (Figure S4E) and 4

(data not shown) weeks. In contrast, single GFP�/lo LNCaP cells

developed into three distinct types of clones: type I with all cells

being GFP+, type II containing both GFP+ and GFP�/lo cells, and

type III containing all GFP�/lo cells (Figures S4F–S4H). Quantita-

tive analysis demonstrated that by 2 weeks, 70%–80% of all

clones derived from single GFP�/lo LNCaP cells were type I and

�20% were type II, whereas the rest were type III (Figures S4I

and S4J). Type I clones were likely derived from the cells that,

at the sorting, had already committed to differentiation. Type III

clones might all be PSA�/lo cells that underwent symmetric

self-renewal based on PCRexclusion of noninfection (Figure 1C).

Regardless, the emergence of type II clones indicated that�20%

PSA�/lo LNCaP cells were able to undergo asymmetric cell divi-

sion (ACD), regenerating PSA�/lo and giving rise to PSA+ cells.

Because ACD is the cardinal feature of SCs (Knoblich, 2008),

we used time-lapse videomicroscopy to further study the clonal

development of PSA+ versus PSA�/lo LNCaP cells. In agreement

with our ‘‘static’’ clonal analysis (above), live imaging of single

GFP+ cells showed that the PSA+ LNCaP cells only underwent

symmetric division, generating clones that contained all PSA+

cells (Figure 2F; Movie S1). By contrast, single GFP� cells gener-

ated type I (Figure 2G; Movie S1), type II (Figure 2H; Movie S1),

and type III (Figure 2I; Movie S1) clones. Approximately 15% of

the GFP� LNCaP cells underwent ACD during the first cell divi-

sion, with one daughter cell becoming GFP+ (Figure 2J). Analysis

of the end-point clones derived from single GFP� cells showed

that 21% and 11% clones were of type II and type III, respec-

tively (Figure 2K).

To further explore asymmetric PCa cell division, we examined

Numb partition during or right after mitosis. Numb is a Notch

antagonist preferentially segregated into the differentiated

daughter cells during asymmetric divisions of neuronal, hemato-

poietic, and muscle SCs (Knoblich, 2008; Wu et al., 2007). We

observed that in 242 GFP� LNCaP cells that had just undergone
560 Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc.
mitosis, 15% of the cells preferentially segregated Numb to the

daughter cell that also expressed more PSA (Figure 2L; Fig-

ure 3A). In such cells, Numb showed typical cortical concen-

tration (Figure 3A), consistent with its well-established roles in

cell polarity and ACD. Using ‘‘mitotic shake-off’’ strategy, we

observed similar asymmetric cosegregation of PSA and Numb

in one daughter cell in some GFP� LNCaP cells (Figure 3B,

a–d), whereas in LNCaP cells that underwent symmetric division,

Numb was also equally distributed in both cells (Figure 3B, e–h).

Finally, we coinfected LNCaP cells with PSAP-GFP and a Numb-

DsRed fusion retroviral reporter. The DsRed+/GFP� LNCaP

underwent ACD at 6 hr, when Numb was partitioned in only

one daughter cell, and from 24 hr, the Numb+ daughter cell

also started to express GFP (i.e., PSA; Figure 3C). These obser-

vations indicate that a subset of PSA�/lo LNCaP cells can

undergo authentic ACD associated with Numb cosegregation

into the differentiated PSA+ daughter cells.

PSA–/lo PCa Cells Purified from Xenografts Possess
Long-Term Clonogenicity, Are Quiescent, and Can
Undergo ACD
We used PSAP-GFP or the modified lentivectors to establish

LAPC9 (and LAPC4) ‘‘reporter’’ tumors (Figure S5A). The

LAPC4 and LAPC9 xenograft models contain both differentiated

and undifferentiated PCa cells and, as such, are very useful in

elucidating the cellular heterogeneity of PCa (Patrawala et al.,

2005, 2006, 2007). Immunostaining using LAPC4 and LAPC9

cells purified from the reporter tumors revealed that most

GFP+ cells stained strongly for PSA, whereas GFP�/lo tumor cells

were generally negative or weak for PSA (Figures S5B and S5C).

Western blotting (Figure 3D) and qPCR (data not shown) also

revealed lower protein and mRNA levels of PSA and AR in

GFP�/lo LAPC9 cells.

In serum-containing medium, PSA�/lo LAPC9 cells initiated

spheres that gradually enlarged and expanded and could be

passaged for at least four generations, whereas PSA+ cell-

initiated spheres aborted by 2� generation, despite that they

formedslightlymore 1� spheres (Figure 3E; FigureS5D), suggest-
ing that PSA�/lo LAPC9 cells possess high sphere-propagating

capacity. When PSA+ and PSA�/lo LAPC9 cells were cultured in

medium containing CDSS, PSA�/lo cells formedmuchmore (Fig-

ure 3F) and larger (Figure S5E) spheres than PSA+ cells. Interest-

ingly, purified PSA�/lo LAPC4 cells founded more and larger

spheres in both serum- (Figure S5F, a–c) and bicalutamide-con-

taining (Figure S5F, d–f) media. Similar to PSA�/lo LNCaP cells,

the PSA�/lo LAPC9 cells in the tumors were quiescent, as as-

sessed by in vivo BrdU LRC (Figure 3G) and PKH26 dye-retaining

(Pece et al., 2010) (Figure S6A) assays. Finally, we infected

LAPC9 cells with PSAP-GFP/Pcmv-DsRed (Figure S3A), plated

the purified PSA�/lo (i.e., DsRed+/GFP�) cells on fibroblast

feeder, and tracked their developmental fates. Although most

PSA�/lo LAPC9 cells underwent symmetric cell division (Fig-

ure 3H, top), �5% cells underwent ACD, generating PSA+

LAPC9 cells (i.e., DsRed+/GFP+, yellow; Figure 3H, bottom).

PSA–/lo LAPC9 Cells Express Genes Associated
with SC Functions and Castration Resistance
Microarray profiling revealed that �200 genes were overex-

pressed, whereas �300 genes were underexpressed (FCR 1.4,
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Figure 3. Distinct Biological Properties of PSA–/lo LNCaP and LAPC9 Cells
(A) Two representative GFP� LNCaP cells cosegregating PSA and Numb into one daughter cell during the first cell division (scale bar represents 20 mm).

(B) Different distribution patterns of PSA and Numb during asymmetric (Ba–Bd) and symmetric (Be–Bh) division of LNCaP cells assessed in the mitotic shake-off

experiments. Images shown are representative of about five dozens of cells for each mode of cell division (scale bar represents 20 mm).

(C) Asymmetric cosegregation of Numb andPSAduring ACD of PSA�/lo LNCaP cells assessed by time-lapse videomicroscopy. Shown are images of a PSA� (i.e.,

DsRed+/GFP�) LNCaP cell undergoing ACD by asymmetrically segregating Numb into one daughter cell, which subsequently acquired GFP (PSA) positivity

(representative of a total of 188 similar movies analyzed).

(D) Western blotting analysis of the molecules indicated in purified PSA+ and PSA�/lo LAPC9 cells.

(E and F) Purified PSA+ and PSA�/lo LAPC9 cells were cultured (10,000 cells/well) in anchorage-independent conditions in either IMDM-15% FBS (E) or

IMDM-15% CDSS (F) for 3 weeks, and spheres were enumerated. Shown in (E) is serial sphere passaging (see also Figure S5D). *p < 0.01.

(G) PSA�/lo LAPC9 cells were quiescent, as analyzed by in vivo LRC assays. *p < 0.0001.

(H) PSA�/lo (i.e., DsRed+/GFP�) LAPC9 cells undergo symmetric (top) or asymmetric (bottom) cell divisions assessed by time lapse. Images are representative of

65 movies analyzed.

(I) Distinct gene expression profiles of PSA�/lo and PSA+ LAPC9 cells. Shown are pie charts of gene categories (percentage indicated) overexpressed (top) and

underexpressed (bottom) in PSA�/lo cells.
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p < 0.05) in PSA�/lo LAPC9 cells, which fall into distinct functional

categories (Figure 3I; Table S3; Table S4). Most prominently,

�27% of genes (>50) overexpressed in PSA�/lo LAPC9 cells

were associated with SCs and development, which included

SPP1 (osteopontin or OPN), FGFs, ALDH1A1, integrin a2, c-KIT,

Bcl-2, IGF-1, CD44, and Nanog (Figure 3I, top; Table S3;

Table S4). Overexpression of some of these molecules was

confirmed by western blotting (Figure 3D) and/or qPCR (Fig-

ure S6B). Many of the upregulated genes including Bcl-2, IGF-1,
IGFBP3, REG4, and Nanog have been implicated in resistance

to androgen deprivation (Jeter et al., 2011). Intriguingly, the

PSA�/lo LAPC9 cells overexpressed about 20 neural/glial-related

genes (Table S4), suggesting that PSA�/lo cellsmight be related to

or have the ability to generate neuroendocrine-like cells. Finally,

many genes preferentially expressed in PSA�/lo LAPC9 cells

were shared with those expressed in ESCs or with the genes

having either bivalent or H3K27me3 chromatin marks (Fig-

ure S6C). The major class of genes upregulated in PSA+ LAPC9
Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc. 561
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Figure 4. PSA–/lo PCa Cells Possess High and Long-Term Tumor Propagating Capacity

(A and B) Tumor weights (A; mean ± S.D, *p < 0.05, **p < 0.01) and incidence (B; *p = 0.045, #p = 0.006) of PSA+ (+ve) and PSA�/lo (�/lo) LAPC9 cells serially

transplanted in male NOD/SCID mice (see also Figure S7A).

(C and D) GFP+ (+ve) and GFP� (�/lo) LAPC9 cells were acutely purified out and implanted subcutaneously in castrated male NOD/SCID mice treated with

bicalutamide. (C) Tumor volumesmeasured in animals with 1,000 cell injections starting from 6.5weeks postimplantation (mean ± SD; *p < 0.05; tumors harvested

at 66 days for 1,000 cells and 60 days for 10,000 cells). Shown in (D) are incidence and weight.

(E) Purified GFP+ (+ve) and GFP� (�ve) LAPC9 cells were implanted subcutaneously in female NOD/SCIDmice. Tumors were harvested at 78 days (for 100 cells),

66 days (for 1,000 cells) or 53 days (for 10,000 cells) postimplantation.

(F) Triple marker-positive and -negative LAPC9 cells were purified from AI tumors and reimplanted, at the cell doses indicated, in fully castrated NOD/SCIDmice.

(G) The percentage of triple marker-positive LAPC9 cells in three types of tumors, i.e., ‘‘intact’’ tumors maintained in hormonally intact male mice, ‘‘castrated’’

tumors maintained in castrated animals, and the 1� tumors derived from the triple marker-positive cells.

(H) Knockdown of OPN or CD44 inhibits tumor regeneration in PSA�/lo LAPC9 cells. PSA�/lo LAPC9 cells infected with control shRNA (ctl-sh), or CD44 or OPN

shRNAs were implanted subcutaneously in male NOD/SCID mice. Bars represent tumor weights (mean ± SD).

(I) Nanog knockdown inhibits tumor regeneration. Shown are tumor weights and incidence. luc-sh, luciferase-shRNA; nanog-sh, Nanog-shRNA.
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cells (26%) was involved in intermediated metabolism and, inter-

estingly, NumbL, themammalian homolog of Numb, was overex-

pressed in PSA+ cells (Figure 3I, bottom; Table S3).

PSA–/lo PCa Cells Possess Long-Term Tumor-
Propagating Capacity in Hormonally Intact Male Mice
Next, we performed limiting-dilution assays (LDAs) and serial

tumor transplantation assays by monitoring tumor latency, inci-

dence, growth rate, and/or endpoint weight. We first implanted

10,000 each of PSA�/lo (i.e., GFP�/lo) and PSA+ (GFP+) LAPC9

cells subcutaneously in hormonally intact male NOD/SCID

mice. Surprisingly, PSA+ LAPC9 cells readily regenerated pri-

mary (1�) tumors that were about twice as large as those

derived from PSA�/lo cells (Figure 4A; Figure S7A). When we

infected LAPC9 cells with PSAP-GFP/Pcmv-DsRed and purified

out PSA+ (GFP+DsRed+) and PSA�/lo (GFP�DsRed+) cells for

LDAs, the former demonstrated higher tumor-regenerating
562 Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc.
capacity (Table 1) and developed larger tumors (data not shown).

Similarly, when PSA+ and PSA�/lo LAPC9 cells were implanted

orthotopically in the dorsal prostate (DP), PSA+ cells initiated

more (Table 1) and larger (data not shown) tumors. The PSA+

LNCaP cells implanted in testosterone-supplemented male

NOD/SCIDmice also initiated larger tumors (Table 1). These find-

ings suggest that ‘‘differentiated’’ PSA+ PCa cells are, unexpect-

edly, tumorigenic in androgen-proficient hosts.

Nevertheless, when PSA+ and PSA�/lo LAPC9 cell-derived

tumors were serially passaged in intact male mice, PSA�/lo cells

maintained relatively constant tumorigenicity, whereas PSA+

cells displayed decreasing tumorigenicity (Figures 4A and 4B;

Figure S7A). By 2� generation, tumor weights between the two

groups became almost equal, and starting from the 3� genera-

tion, PSA+ cells generated tumors two to three times smaller

than PSA�/lo cell-derived tumors (Figure 4B; Figure S7A). Tumor

growth rates also showed contrasting patterns: although the



Table 1. Tumor-Initiating Frequency of PSA+ and PSA–/lo PCa Cells in NOD/SCID Mice

Cells

Cell Dose Tumor-Initiating Frequency

(95% Interval)a p Valuea105 104 103 102 10 1

LNCaP

PSA+ (male) 2/4 (1.0 g)

PSA�/lo (male) 3/5 (0.3 g)

PSA+ (castr.) 0/6

PSA�/lo (castr.) 2/6 (1.3 g)

PSA+ (female) 1/6 (0.5 g) 1/6 (0.05 g) 1/30,110 (1/7,199–125,944)

PSA�/lo (female) 4/5 (1.4 g) 5/7 (0.7 g) 1/2,674 (1/986–7,250) 0.0005

LAPC9

PSA+ (male)b 2/2 5/6 4/10 4/10 1/8 1/204 (1/88–473)

PSA�/lo (male)b 1/2 4/6 4/10 2/10 0/8 1/552 (1/243–1,254) 0.0335

PSA+ (male)/DPc 1/1 3/4 3/7 1/4,156 (1/1,518–11,382)

PSA� /lo (male)/DPc 1/1 1/4 1/7 1/20,187 (1/5,125–79,523) 0.0399

PSA+ (castr.)b 2/4 3/10 1/10 0/8 1/615 (1/238–1,589)

PSA�/lo (castr.)b 2/4 2/10 2/9 1/8 1/196 (1/77–499) 0.075

PSA+ (castr.)c 6/6 6/6 1/1 (1/1–1,071)

PSA�/lo (castr.)c 7/7 5/6 1/559 (1/206–1,515) 0.224

PSA+ (female)c 6/6 4/6 5/8 1/425 (1/180–1,006)

PSA�/lo (female)c 6/8 5/6 6/8 1/235 (1/92–605) 0.254

ALDHhiCD44+a2b1+ (castr.) 1�d 6/8 4/6 3/8 2/8 0/8 1/448 (1/193–1,043)

ALDHloCD44�a2b1� (castr.) 1�d 1/2 0/6 0/6 0/8 0/8 1/21,298 (1/3,126–145,130) 648 3 10150

ALDHhiCD44+a2b1+ (castr.) 2�d 7/8 5/8 0/8 0/8 1/283 (1/125–645)

ALDHloCD44�a2b1� (castr.) 2�d 2/3 0/8 0/8 1/13,802 (1/3,366–53,421) 2.23 3 109

LAPC4

PSA+ (male) 3� 6/10 4/8 1/6,895 (1/3,374–14,088)

PSA�/lo (male) 3� 10/10 8/8 1/1 (1/1–860) 9.65 3 108

For LNCaP: PSA+ (i.e., GFP+) and PSA�/lo (GFP�/lo) LNCaP cells were purified and implanted subcutaneously in 50% Matrigel in three types of

NOD/SCID mice, i.e., intact male mice supplemented with testosterone pellets, surgically castrated (castr.) male mice also treated with bicalutamide,

or female mice. All tumors were harvested 3–4.5 months after implantation.

For LAPC9: See footnotes.

For LAPC4: Shown are the tumor LDAs performed with the third-generation LAPC4 reporter tumors (see Figure S7B).
aTumor-initiating frequency and statistical differences (p values) were determined using the Limdil function of the Statmod package (http://bioinf.wehi.

edu.au/software/elda/index.html).
bLAPC9 cells acutely purified from xenograft tumors were infected with PSAP-GFP/Pcmv-DsRed (moi 20; 72 hr). Purified PSA+ (i.e., GFP+DsReD+) and

PSA�/lo (GFP�DsRed+) cells at the indicated numbers were injected subcutaneously into the intact or castrated male mice. All tumors were harvested

in 2–3 months.
cPSA+ (i.e., GFP+) and PSA�/lo (i.e., GFP�/lo) LAPC9 cells were purified out from reporter tumors. Cells at the indicated numbers were implanted

subcutaneously or orthotopically (in the dorsal prostate) in 50% Matrigel in the three types of hosts. All tumors were harvested in �2 months.
dThe triple marker-positive and -negative LAPC9 cells were purified from the xenograft tumors that were maintained long-term in castrated NOD/SCID

mice and injected at the indicated cell doses. Tumors were harvested �2 months postimplantation. Then triple marker-positive and -negative cells

were purified from the two tumors initially derived from ten marker-positive cell injections and used in secondary transplantations, which were har-

vested 73 days later.
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1� PSA+ LAPC9 tumors grew faster than PSA�/lo tumors, start-

ing from the 3� generation, the PSA�/lo tumors grew much faster

(data not shown). Importantly, although initially there was no

significant difference in tumor incidence between the PSA+

and PSA�/lo groups, by the 5� generation tumor incidence was

lower for PSA+ cells, and, by the 6� generation, tumor incidence

was significantly lower (p = 0.006) for PSA+ cells (Figure 4B; Fig-

ure S7A). Comparing tumor incidence across PSA+ generations

revealed that the 6� tumor incidence wasmuch lower than that in

the earlier (i.e., 1�–4�) generations (p = 0.007; proportion trend

test). These observations indicate that PSA�/lo LAPC9 cells
are endowed with long-term tumor-propagating capacity in

androgen-proficient male hosts.

Similarly, the 1� PSA+ LAPC4 tumors were slightly larger than

those derived from PSA�/lo cells, but later-generation PSA+

LAPC4 cells regenerated significantly smaller tumors than

the corresponding PSA�/lo or early-generation PSA+ cells (Fig-

ure S7B). Slightly different from LAPC9, PSA�/lo LAPC4 cells

consistently demonstrated higher tumor incidence than PSA+

cells across generations (Figure S7B; Table 1).

Consistent with the PSA�/lo LNCaP and LAPC9 cells being

able to undergo ACD, generating both PSA�/lo and PSA+ cells,
Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc. 563
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whereas PSA+ cells undergo only symmetric divisions, most

tumor cells in PSA+ LNCaP cell-derived tumors in male mice

were GFP+/PSA+, whereas tumors derived from PSA�/lo LNCaP

cells contained both GFP+/PSA+ and GFP�/PSA� cells (Fig-

ure S7C). Likewise, most tumor cells in PSA+ LAPC9 cell-derived

tumors serially passaged in male mice were GFP+/PSA+,

whereas tumors derived from PSA�/lo cells contained both

GFP+/PSA+ and GFP�/PSA� cells (data not shown). FACS anal-

ysis demonstrated that tumors derived from GFP+ LAPC9 cells

contained mostly GFP+ cells, whereas tumors derived from

PSA�/lo LAPC9 cells contained �20% GFP�/lo cells, with the

majority of cells being GFP+ (Figure S7D), indicating that

the GFP�/lo PCa cells can undergo self-renewal and recreate

the cellular heterogeneity in vivo.

PSA–/lo Cells Harbor CRPC-Regenerating Subpopulation
that Can Be Further Enriched by the ALDH+CD44+a2b1+

Profile
We then implanted purified PSA+ and PSA�/lo LAPC9 cells in

castrated male NOD/SCID mice also treated with bicalutamide

(50 mg/kg body weight; 3 times/week). In such ‘‘fully castrated’’

mice, PSA�/lo LAPC9 cells developed much larger tumors that

grew significantly faster than corresponding PSA+ cells (Figures

4C and 4D). In female NOD/SCID mice, often used as surrogate

androgen-deficient hosts (Klein et al., 1997), PSA�/lo LAPC9 cells

similarly initiated larger tumors than PSA+ cells (Figure 4E). Puri-

fied PSA�/lo LNCaP cells also regenerated larger and/or more

tumors in fully castrated male or female NOD/SCID mice

(Table 1). These results suggest that the PSA�/lo PCa cells are

more tumorigenic than PSA+ cells in androgen-deficient hosts.

Intriguingly, the PSA�/lo LAPC9 cells did not display signifi-

cantly higher tumor-initiating frequency, whether we utilized

PSAP-GFP or PSAP-GFP/Pcmv-DsRed lentivectors to purify

PSA+ and PSA�/lo cells (Table 1). We reasoned that the PSA�/lo

cell population was still heterogeneous, with tumorigenic cells

that are able to initiate CRPC likely representing a minority.

cDNA microarray analysis revealed the overexpression of

ALDH1A1, integrin a2, and CD44 in PSA�/lo LAPC9 cells (Table

S3). ALDH1A1 is the major mediator of Aldefluor phenotype,

and Aldefluor-hi (i.e., ALDH+) population is enriched in cancer

SCs (CSCs) (van den Hoogen et al., 2010), whereas CD44+

PCa cells contain tumor-initiating cells (Patrawala et al., 2006)

that can be further enriched by CD44+a2b+ phenotype (Patra-

wala et al., 2007). Consequently, we purified ALDH+CD44+a2b1+

and ALDH�CD44�a2b1� LAPC9 cells (Figure S7E) from the

xenograft tumors maintained in castrated male NOD/SCID

mice in which �90% tumor cells were PSA�/lo and performed

serial LDAs in fully castrated mice. Remarkably, ALDH+CD44+a

2b1+ cells, in a cell dose-dependent manner, initiated tumor

regeneration with as few as ten cells (Figure 4F; Table 1). In

contrast, ALDH�CD44�a2b1� cells only regenerated one tumor

(out of 22 injections) at the highest cell number (Figure 4F), which

likely resulted from cell impurity. Similar differences in tumorige-

nicity were observed between the two populations in the 2�

transplantations (Table 1). The abundance of ALDH+CD44+

a2b1+ cells was higher in castrate tumors than tumors in intact

male mice and was maintained during serial transplantations

(Figure 4G; data not shown), indicating the self-renewal of these

cells in vivo. Combined, these results suggest that the ALDH+
564 Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc.
CD44+a2b1+ phenotype in PSA�/lo population further enriches

CRPC cells.

To determinewhatmoleculesmight be involved in determining

the tumorigenicity of PSA�/lo PCa cells, we again resorted to

our microarray data, which identified increased expression of

Nanog, CD44, and OPN, among many others. Overexpression

of Nanog, CD44, and OPN was confirmed by qPCR in indepen-

dently purified PSA�/lo LAPC9 and other PCa cells (Figure S6B;

data not shown). We therefore infected PSA�/lo LAPC9 cells

with lentivectors encoding small hairpin RNA (shRNA) for Nanog

(Jeter et al., 2009), OPN, or CD44 (Liu et al., 2011). Knockdown of

OPN, CD44, or Nanog (Figures 4H and 4I) inhibited tumor regen-

eration of PSA�/lo LAPC9 cells in fully castrated hosts, consistent

with our recent findings that CD44 knockdown inhibits PCa

metastasis (Liu et al., 2011) and that Nanog overexpression

promotes CSC properties and PCa cell resistance to androgen

deprivation (Jeter et al., 2011).

PSA–/lo PCa Cells Resist Androgen Deprivation In Vivo
Wecarried out an ADT experiment (Yoshida et al., 2005) to deter-

mine whether PSA�/lo PCa cell-derived tumors resist androgen

ablation in vivo. We purified PSA+ and PSA�/lo LAPC9 cells

and injected them into intact male mice. When tumors became

palpable, mice were castrated and also treated with bicaluta-

mide. PSA�/lo cell-derived tumors grew much better (Figure 5A)

and larger (Figure 5B) in androgen-depleted hosts than PSA+

cell-derived tumors. We further attempted to mimic the clinical

scenario by correlating % GFP+ (PSA+) cells during castration

with biochemical (PSA) failure and tumor recurrence (regrowth).

When the group of animals bearing LAPC9 tumors was castrated

and concomitantly treated with bicalutamide at week 5, tumor

growth plateaued, serum PSA levels dipped, and the % GFP+

cells declined by week 6 (Figure 5C). However, by week 8,

despite continued decrease in GFP+ cells (Figure 5C, right),

tumor growth resumed (Figure 5C, left, inset) and serum PSA

rebounded (Figure 5C, middle, inset), signaling biochemical

recurrence (BCR) and tumor recurrence. These observations

were remarkably similar to what was observed in PCa patients

undergoing ADT (Ryan et al., 2006) and provide evidence that

androgen ablation enriches PSA�/lo PCa cells.

The PSA–/lo Cells from Primary Prostate Tumors
and Early Xenografts Were Also More Clonogenic
and Tumorigenic
Are the preceding findings in PCa models (LNCaP, LAPC9, and

LAPC4) applicable to patient tumors? Strikingly, low levels of

tumor PSA mRNA correlated with reduced BCR-free and

overall patient survival (Figure 6A). We purified primary prostate

tumor (HPCa) cells from (untreated) prostatectomy specimens,

infected them with PSAP-GFP, separated PSA+ and PSA�/lo

cells, and performed clonal and sphere assays in serum/

androgen-free medium (Jeter et al., 2009; Liu et al., 2011). The

results from three HPCa samples showed that PSA�/lo cells did

not express AR protein (data not shown) and possessed signifi-

cantly higher clonal and sphere-forming capacities than corre-

sponding PSA+ cells (Figures 6B–6D; Figure S8A). Importantly,

we observed clonal development patterns in HPCa cells similar

to those observed in LNCaP cells. For instance, most PSA+

HPCa12 cell-derived clones were GFP+, whereas the PSA�/lo
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Figure 5. PSA–/lo PCa Cells Are More Resistant to

Experimental ADT

(A and B) Purified PSA+/PSA�/lo LAPC9 cells (10,000 each)

were injected subcutaneously in intact male mice, and

when tumors became palpable, mice were castrated and

treated with bicalutamide (time 0). Tumors weremeasured

at the indicated time points, and results are presented as

fold increase in tumor growth over time 0 (F; *p < 0.05;

**p < 0.01; ***p < 0.001). Shown in (B) are tumor weights

(mean ± SD; *p < 0.05) from one group of animals at the

end of experiments (see Table 1 for incidence).

(C) ‘‘Recurrence’’ experiments. Shown are measurements

of tumor volume (left), serum PSA (middle), and the per-

centage of GFP+ LAPC9 cells in the tumors (right) starting

from the fourth week after implantation. Arrows indicate

the time of castration (i.e., the fifth week). Insets: tumor

volume (left) and PSA (middle) plotted for the castrate

group only (asterisks indicate when tumors ‘‘recurred’’ at

8 weeks).
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cell-derived holoclones contained GFP�/lo, as well as GFP+ cells

(Figure 6E). Similar type II clones were observed in PSA�/lo cells

plated on collagen (Figure 6F), and somePSA�/lo HPCa cells also

underwent ACD (Figure 6G). Microarray analysis in four pairs of

purified PSA�/lo and PSA+ HPCa cells revealed preferential

expression of many SC/developmental genes in PSA�/lo HPCa

cells (Table S5).

Using one of the early-generation (4�) HPCa xenografts, i.e.,

HPCa58 (Liu et al., 2011), we established reporter tumors similar

to LAPC9 and LAPC4. The reporter tumor was green (Figure 6H)

and expressed PSA mRNA (Figure 6I). PSA immunostaining

revealed a good correlation between GFP and PSA positivity

(Figure 6J). When PSA+ and PSA�/lo HPCa58 cells were

used in sphere assays, the PSA�/lo cells demonstrated higher

sphere-forming capacity in both androgen-supplemented (Fig-

ure S8B) and androgen-ablated (Figure S8C) conditions. Serial

transplantations in male NOD/SCID mice revealed that PSA+

HPCa58 cells initiated larger tumors than the corresponding

PSA�/lo cells in the first generation; however, upon passaging,

PSA�/lo HPCa58 cells developed larger tumors than the corre-

sponding PSA+ cells (Figure 6K). Finally, when equal numbers

(10,000) of PSA+ and PSA�/lo HPCa58 cells were implanted in

castrated male NOD/SCID mice treated with bicalutamide,

PSA�/lo cells generated larger and more tumors (Figure S8D).

Experiments with another HPCa reporter tumor, i.e., HPCa80,

revealed that the PSA�/lo HPCa80 cells generated larger tumors

than PSA+ HPCa80 cells (Figure S8E).

DISCUSSION

PSA–/lo PCa Cells, Tumor PSA mRNA, and Serum PSA:
Relevance to PCa
PSA is normally expressed and secreted by prostate luminal

cells and represents one of the best-characterized organ-

specific differentiation markers. Early studies have shown that

PSA protein expression in PCa positively correlates with its
Cell Stem Cell 1
degree of differentiation and that both untreated

PCa and CRPC contain PSA+ and PSA�/lo

cancer cells. Our own analysis of �45 patient

tumors confirms the two populations of PCa
cells and, importantly, demonstrates that the abundance of

PSA�/lo PCa cells is enriched in high-grade and treatment-failed

tumors. PSA protein is also reduced or lacking in metastases

(Varambally et al., 2005). Strikingly, lower tumor PSA mRNA

levels positively correlate with worse clinical outcomes, in-

cluding high tumor grade, LN positivity, metastasis, recurrence,

and reduced patient survival. The association of PSA�/lo PCa

cells and tumor PSA mRNA/protein with poor clinical features

is opposite to the positive correlation between serum PSA and

the same clinical parameters. Elevated serum PSA levels in

advanced PCa may be due to increased access of PCa cells to

bloodstream and/or related to increased tumor mass in which

PSA�/lo PCa cells can differentiate into PSA+ cells.

PSA–/lo PCa Cells and AR
PSA has been thought to be strictly regulated by AR. In clinical

samples, however, AR and PSA protein expression is often

discordant and heterogeneous, with some PCa cells showing

little expression of either molecule (Hobisch et al., 1995; Mosta-

ghel et al., 2007; Ruizeveld de Winter et al., 1994; Shah et al.,

2004). Discordant AR and PSA expression is also reflected at

the mRNA levels in individual primary, hormone-refractory, and

recurrent tumors, as well as in metastases (Figure S2B; unpub-

lished data). The discordant expression patterns of PSA and

AR suggest that PSA expression can be regulated in an AR-

independent manner (Hsieh et al., 1993) and that prostate

tumors contain AR+/PSA+, AR+/PSA�, AR�/PSA+, and AR�/
PSA� PCa cells.

The PSA+ PCa cells isolated based on our reporter systems

mostly show strong nuclear AR, whereas PSA�/lo population

contains both AR� and AR+ cells. Consequently, PSA+ cells re-

semble AR+/PSA+ cells, whereas PSA�/lo cells contain both

AR+/PSA�andAR�/PSA�PCacells. ARexpression is sometimes

upregulated in advancedand recurrent tumors,whichwesurmise

could be related to the expansion of AR+/PSA� PCa cells. Future

work that permits fractionation of AR+/PSA� and AR�/PSA� PCa
0, 556–569, May 4, 2012 ª2012 Elsevier Inc. 565
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Figure 6. Distinct Biological and Tumor-Propagating Properties of PSA+ and PSA–/lo HPCa Cells

(A) Meta-analysis showing lower tumor PSAmRNAs correlating with reduced BCR-free or overall patient survival. Data were based on the Nakagawa study (see

Figure S2).

(B) PSA+ and PSA�/lo HPCa12 cells were plated (2,000 cells/well) in serum/androgen-free PrEBM medium on Swiss 3T3 feeders for holoclone analysis (top;

**p < 0.01) or in low-attachment plate for sphere-formation assays (bottom; *p < 0.05).

(C and D) PSA+/PSA�/lo HPCa18 (C) and HPCa 19 (D) cells were plated (100 cells/well) and cultured on Swiss 3T3 feeder plate for 18 days, and individual

holoclones were enumerated. *p < 0.05.

(E–G) PSA+ and PSA�/lo HPCa cells were purified from three patient tumors, infected, FACS purified, and plated (at 1 cell/well in 96 microwell plate) on either

fibroblasts (E and G) or collagen (F). Images in E were taken 12 days postplating.

(H–K) Experiments with HPCa58 early xenograft tumors. HPCa58 cells were purified out from the 4� HPCa58 xenografts, infected with PSAP-GFP, and implanted

subcutaneously in male NOD/SCID-gmice to establish reporter tumors. (H) A representative reporter tumor. (I) RT-PCR of PSAmRNA. (J) PSA immunostaining in

GFP+ HPCa58 cells on cytospun slides (small white arrows, GFP� cells that were also PSA�). (K) Tumor weights (mean ± SD) and incidence of serially trans-

planted PSA+ (+ve) and PSA�/lo (�/lo) HPCa58 cells (10,000 cells/injection).
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cells should allow us to directly address this postulate. It should

be noted that AR possesses PCa-suppressive functions (Niu

et al., 2008), AR signaling is attenuated in some advanced PCa

(Tomlins et al., 2007), AR is significantly reduced and only detect-

able in�40%PCa cells in hormone-refractorymetastases (Davis

et al., 2006), and AR requirement in PCa may be context depen-

dent (Memarzadeh et al., 2011).

Distinct Biological Properties and Gene Expression
Profiles of PSA–/lo PCa Cells
PSA�/lo PCa cells possess high clonogenic capacity, survive

better in androgen-deficient conditions, and are refractory to

not only androgen deprivation but also drugs. PSA�/lo PCa

cells are quiescent, which could partly explain their resistance

to various stresses. Importantly, a fraction of PSA�/lo PCa

(�15%–20% PSA�/lo LNCaP and 5% PSA�/lo LAPC9) cells can

undergo authentic ACD, a cardinal feature of SCs. In contrast,
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PSA+ cells undergomainly symmetric divisions. The distinct divi-

sionpatternsbetweenPSA+andPSA�/lo cells overall aremirrored

in the respective tumors they regenerate—although the PSA+

cell-derived tumors contain mostly PSA+ cells, the PSA�/lo cell-

originated tumors contain both PSA�/lo and PSA+ cells.

It is presently unclear how PSA�/lo and PSA+ cells, both of

which are maintained under identical conditions, embark on

different developmental fates. Nevertheless, the distinct division

modes of PSA�/lo and PSA+ cells reinforce their intrinsic biolog-

ical differences. Significantly, the PSA+ differentiated daughter

cell derived from asymmetric division of a PSA� PCa cell also

preferentially ‘‘inherits’’ Numb, one of the best-studied cell fate

determinants known to be asymmetrically segregated into dif-

ferentiated daughter cells (Knoblich, 2008). It is interesting that

asymmetric segregation of Numb precedes that of PSA (Fig-

ure 3J), raising the possibility that Notch signaling may regulate

PCa cell ACD.
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PSA�/lo LNCaP and LAPC9 cells preferentially express dozens

of genes associated with development and SC functions. These

SC-associated molecules are functionally important, as demon-

strated for ASCL-1, IGF-1, and NKX3.1 in LNCaP cells and

Nanog, CD44, and OPN in LAPC9 cells. The PSA�/lo LNCaP

and LAPC9 cells commonly overexpress hundreds of genes

(e.g., BCL2, IGF1, SOX15, BMPR1B, TGFBR1, etc.), which fall

into distinct GO categories including SC, development, stress

response, and wound healing (unpublished data).

The PSA�/lo LNCaP and LAPC9 cells do express ‘‘unique’’

gene categories. Thus, PSA�/lo LNCaP cells prominently un-

derexpress genes associated with cell-cycle progression and

mitosis. In contrast, the PSA�/lo LAPC9 cells overexpress

hundreds of signaling molecules but underexpress genes asso-

ciated with intermediate metabolism. The observations that

PSA�/lo LNCaP cells underexpress cell-cycle and mitosis-

associated genes and that PSA�/lo LAPC9 cells underexpress

metabolism-associated genes are consistent with the PSA�/lo

PCa cells being more quiescent. Intriguingly, PSA�/lo and PSA+

LAPC9 cells frequently exhibit reciprocal gene expression

patterns (Table S4), suggesting that the two populations of

PCa cells may crosstalk and reciprocally regulate each other in

a ‘‘paracrine’’ fashion, as hinted by emerging data in other tumor

systems (Tang, 2012).

Distinct Tumor-Propagating Properties of PSA–/lo Cells:
Evidence for a Tumorigenic Pool that Harbors Distinct
CSC Subsets
Tumor transplantation experiments in NOD/SCID mice (�2,000

used) reveal that, although the tumor-propagating capacities of

PSA�/lo PCa cells are maintained across the generations in

hormonally intact male mice, the tumor-regenerating ability of

the corresponding PSA+ PCa cells gradually declines, suggest-

ing that PSA�/lo cells possess long-term tumor-propagating

capacity. The PSA�/lo cell-regenerated tumors recreate the orig-

inal tumor heterogeneity containing both PSA�/lo and PSA+ cells.

ThatPSA+ cells serially transplanted in androgen-proficient hosts

manifest diminishing tumorigenic potential strongly suggests

that these cells intrinsically possess more limited self-renewal

ability compared to PSA�/lo PCa cells. The unexpected observa-

tions that PSA+ cells, at the first generation, often demonstrate

higher tumorigenic potential than the isogenic PSA�/lo cells

caution us to be careful when using tumor regeneration as a yard-

stick of measuring CSC properties. Preferably, serial transplan-

tation assays should be performed; otherwise, misleading or

even opposing/contradictory conclusions may be reached.

When transplanted in androgen-deficient hosts, PSA�/lo

PCa cells initiate much larger and faster-growing tumors than

isogenic PSA+ cells. Taken together, the biological, molecular,

and tumorigenic properties of PSA�/lo cells presented herein,

coupledwith earlier reports on several prostate CSC populations

(e.g., Collins et al., 2005; Huss et al., 2005; Maitland et al., 2011;

Patrawala et al., 2006; Rajasekhar et al., 2011), suggest that the

PSA�/lo cell population may represent a tumorigenic pool that

harbors several subsets of stem-like cancer cells. First, CD133+

a2b1hiCD44+ primary PCa cells (Collins et al., 2005), ABCG2+

PCa cells in situ (Huss et al., 2005), and Lin�CD44+ PCa cells

in xenografts (Patrawala et al., 2006) all seem to express low

levels of AR and to lack PSA, suggesting that these PCa cell
subsets may overlap with each other and are all harbored in

PSA�/lo population. Second, unbiased whole-genome transcrip-

tome analysis reveals preferential expression of CD44, integrin

a2, and ALDH1A1 in PSA�/lo LAPC9 cells. Third, prospectively

purified ALDH+CD44+a2b1+ subpopulation in PSA�/lo cells

greatly enriches for more tumorigenic, castration-resistant PCa

cells. Finally, CD44+ PCa cells freshly purified from a dozen

untreated primary tumors express much lower levels of PSA

mRNAs than the corresponding CD44� PCa cells (X.L. et al.,

unpublished data). Future work will further elucidate the interre-

lationship between various subsets of tumorigenic cells and

characterize PSA�/lo PCa cells with respect to their relationship

with luminal and basal cells.

PSA–/lo CSCs May Represent an Important Source
of CRPC Cells
One of themost significant contributions of the present work is to

provide direct experimental evidence that PSA�/lo PCa cells may

represent an important source of CRPC cells. First, PSA�/lo cells,

in vitro, survive androgen deprivation, resist drug/stress treat-

ments, and robustly found holoclones and self-renewing

spheres. Second, when both PSA+ and PSA�/lo cells are im-

planted in male mice that are subsequently subjected to ADT,

the PSA�/lo cell-derived tumors are refractory to castration and

continue to develop. Third, androgen deprivation greatly en-

riches the PSA�/lo cells, which could initiate robust tumor devel-

opment in castrated hosts. These findings closely resemble the

AI progression observed in patients and mirror the observed

reduction in PSA-producing cells in patient tumors upon

androgen depletion (Ryan et al., 2006).

We have provided prospective evidence that PSA�/lo PCa

cells, which preexist in the tumors, are molecularly and function-

ally distinct from the differentiated counterparts. We have shown

that under normal (i.e., androgen-proficient) conditions, undiffer-

entiated PSA�/lo cells harbor self-renewing CSCs and likely

represent one important source of CRPC cells. Future work will

address whether, under other conditions such as persistent

castrations, PSA+ PCa cells may manifest increased plasticity

by undergoing dedifferentiation, as shown by emerging data in

other tumors (Tang, 2012). Altogether, our results suggest that

novel therapeutics targeting PSA�/lo cells should be developed

and used in conjunction with ADT in order to eradicate all PCa

cells and prevent recurrence.

EXPERIMENTAL PROCEDURES

Detailed methods are available online in the Supplemental Experimental

Procedures.

Serial Tumor Transplantation in NOD/SCID Mice

We sorted out GFP+ and GFP� PCa cells by FACS from 1� tumors originally

derived from GFP+ and GFP� cells, respectively, and implanted subcutane-

ously to generate 2� tumors in intact male mice. We performed sequential

tumor transplantation using similar strategies by following the procedure

that GFP+ cells were always purified from tumors that originated from purified

GFP+ cells, whereas GFP� cells were from tumors derived initially from GFP�

cells. For tumor experiments in castrated mice, we surgically castrated male

NOD/SCID mice (6–8 weeks) 1–2 weeks prior to injection. GFP+/GFP� PCa

cells were purified out from reporter tumors and injected subcutaneously

into the castrated mice, which also received intraperitoneal injections of

bicalutamide.
Cell Stem Cell 10, 556–569, May 4, 2012 ª2012 Elsevier Inc. 567
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Experimental ADT and ‘‘Recurrence’’ Experiments

For ADT, GFP+ and GFP� LAPC9 cells were purified out from AD reporter

tumors and injected subcutaneously in intact male NOD/SCID mice. When

tumors reached �60 mm3, mice were surgically castrated and treated with

bicalutamide. Tumor growth was followed by caliper measurement, and

volumes of individual tumor were normalized to those on day 0 (day of castra-

tion). For ‘‘recurrence’’ experiments, unsorted LAPC9 cells from AD reporter

tumors were injected subcutaneously in intact male NOD/SCID mice. Starting

from the fourth week, tumor volumes (mm3) were measured using a digital

caliper, blood samples (100–200 ml/mouse) were collected from each animal

via saphenous vein for serum PSA measurement (ng/ml), and two to three

tumors were harvested to determine by FACS the percentage of GFP+ cells

in individual tumors on weekly basis. For tumor volumes and serum PSA,

the values were presented as fold increases over those from the fourth

week. At the fifth week, animals were randomly divided into the control group,

in which the animals weremock castrated, and the castrate group, in which the

animals were surgically castrated and also treated with bicalutamide.

Time-Lapse Videomicroscopy

Time-lapse fluorescence videomicroscopy was performed using Nikon

Biostation Timelapse system (Liu et al., 2011), as described in the Supple-

mental Experimental Procedures.

cDNA Microarray

Basic procedures have been described (Bhatia et al., 2008). Total RNA was

extracted from pooled purified GFP+, GFP� LNCaP, LAPC9, or HPCa cells,

and microarray experiments were performed in triplicates using the 44 K

60-mer Human Whole-Genome Oligo Microarray Kit from Agilent (Agilent

Technologies, Santa Clara, CA) with 500 ng of total RNA. For details, please

refer to the Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures, five tables, Supplemental

Experimental Procedures, and one movie and can be found with this article

online at doi:10.1016/j.stem.2012.03.009.
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